
International Journal of Heat and Fluid Flow 31 (2010) 70–82
Contents lists available at ScienceDirect

International Journal of Heat and Fluid Flow

journal homepage: www.elsevier .com/ locate / i jhf f
Three-dimensional numerical study of natural convection in an inclined
porous cavity with time sinusoidal oscillating boundary conditions

Q.W. Wang *, J. Yang, M. Zeng, G. Wang
State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 26 March 2009
Received in revised form 9 September 2009
Accepted 13 November 2009
Available online 24 December 2009

Keywords:
Temperature oscillation
Inclined porous cavity
Natural convection
Numerical simulation
0142-727X/$ - see front matter � 2009 Elsevier Inc. A
doi:10.1016/j.ijheatfluidflow.2009.11.005

* Corresponding author. Tel./fax: +86 29 82663502
E-mail address: wangqw@mail.xjtu.edu.cn (Q.W. W
Three-dimensional unsteady natural convections in an inclined porous cavity with time oscillating
boundary conditions are numerically studied in this paper. The Darcy–Forchheimer–Brinkman model
is adopted to model the fluid flow in the porous medium and the combination effects of inclination angles
(a1, a2) and temperature oscillation frequency (f) on the convection characteristics with different Ray-
leigh numbers (Ra = 106 and 107) are carefully investigated, especially when the porous cavity is seriously
inclined (80� 6 a1 6 90�). It is revealed that, when the porous cavity is moderately inclined
(0� 6 a1 6 75�;a2 ¼ 0�), the natural convections inside are stable and quasi two-dimensional. However,
if the cavity is seriously inclined (75� 6 a1 6 90�;a2 ¼ 0�), the flow patterns inside are much more com-
plicated and the three-dimensional multiple roll-cells with different intercrossing angles are established.
It is also found that, when the porous cavity is inclined with three-dimensional method (a1 > 0�, a2 > 0�),
the natural convections become quite different and a series of three-dimensional screw type flexural roll-
cells appears. Furthermore, it is suggested that, with proper selection of inclination angles and oscillation
frequency, the natural convection heat transfer will be significantly improved and the maximal heat
fluxes are finally obtained at the optimal combinations of f = 35p, a1 = 50�, a2 = 45� when Ra = 106 and
f = 40p, a1 = 45�, a2 = 45� when Ra = 107.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Natural convections in porous media are existed in a wide range
of geophysical and engineering applications including geothermal
systems, high-performance building insulations, cooling of elec-
tronic devices and solar power collectors, etc. Representative stud-
ies in this field have been well summarized in the recent books by
Pop and Ingham (2001), Nield and Bejan (2006) and Vafai (2005).
Some more recent researches can also be found in the references
by Oztop (2007), Varol et al. (2008) and Basak et al. (2009). For
example, Oztop (2007) has numerically studied the natural convec-
tions in a partially cooled and inclined rectangular porous enclo-
sure. The effects of Rayleigh number, inclination angle, aspect
ratio and locations of the cooler were carefully investigated. It
was found that inclination angle was the dominant parameter on
heat transfer and fluid flow as well as aspect ratio. Varol et al.
(2008) have performed a theoretical study of natural convections
in an inclined trapezoidal enclosure. The effects of Rayleigh num-
ber, orientation angle, side wall inclination angle and aspect ratio
were considered. It was shown that, the orientation angle was more
influential on heat transfer and flow strength than that of the side
ll rights reserved.
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wall inclination angle. A Benard flow would occur as the orientation
angle was around zero, which would also depend on the side wall
inclination angle, Rayleigh number and aspect ratio. Furthermore,
the phenomena of natural convections in a trapezoidal porous
enclosure for linearly heated vertical wall (walls) with various incli-
nation angles were also investigated by Basak et al. (2009). The sim-
ulations were performed with different Rayleigh number (Ra),
Prandtl number (Pr), Darcy number (Da) and side wall inclination
angle. They found that, with different inclination angles and heating
methods, the transport phenomena in the porous enclosure were
quite different. For example, when the inclination angle equaled
30� and 0� with Pr = 0.026 and 0.7, Da = 10�3 and Ra = 106 for line-
arly heated side walls, the secondary and tertiary circulations mul-
tiple circulations would appear at the bottom half of the cavity.
While for linearly heated left wall and cold right wall, multiple cir-
culations would occur near the top portion of the cavity. These re-
cent references would be useful for further comprehension of
complicated natural convections in the inclined porous enclosures.

Meanwhile, in the past two decades, natural convection in a
system with time oscillating boundary conditions has received
much attention. Kazmierczak and Chinoda (1992) studied the ef-
fect of vertical wall temperature oscillation frequency and ampli-
tude on the heat transfer and fluid flow in a cubic cavity. Xia
et al. (1995) researched the effect of wall temperature oscillation
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Nomenclature

a effective thermal diffusivity, m2 s�1

cF inertia coefficient
cp specific heat at constant pressure, J kg�1 K�1

Da Darcy number (Eq. (4))
f dimensionless oscillating frequency
g gravitational acceleration, m s�2

H cavity height (Fig. 2), m
k thermal conductivity, W m�1 K�1

K permeability, m2

L representative cavity length, m
Nu Nusselt number (Eqs. (8) and (9))
n number of time-period
p pressure, Pa
P dimensionless pressure
Pr Prandtl number (Eq. (4))
Ra Rayleigh number (Eq. (4))
T temperature, K
T0 cold wall temperature, K
T1 temperature oscillation amplitude, K
t time, s
u, v, w velocity in x, y, z directions, m s�1

U, V, W dimensionless velocity in X, Y, Z directions
~m velocity vector, m s�1

~V dimensionless velocity vector, m s�1

x, y, z coordinates, m

X, Y, Z dimensionless coordinates

Greek symbols
a inclination angle, �
a1 inclination angle rotating around y coordinate, �
a2 inclination angle rotating around x coordinate, �
b thermal expansion coefficient, K�1

e porosity
h dimensionless temperature
m kinetic viscosity, m2 s�1

q density, kg m�3

q0 density at T0, kg m�3

r specific heat ratio (Eq. (4))
s dimensionless time
x oscillating frequency, s�1

Subscripts
f fluid phase
Lav absolute time-averaged value on left side wall
m effective value
p time-period
R average value on right side wall
Rav time-averaged value on right side wall
s solid phase
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variation on the natural convection stability in a cubic enclosure
with fixed oscillation frequency. Kwak and Hyun (1996) and Kwak
et al. (1998) investigated the resonance effect of the convective
heat transfer in a cavity. Soong et al. (2001) analyzed the effects
of bottom-wall temperature modulation on the threshold of ther-
mal instability and the oscillatory cellular convection in a rectan-
gular enclosure. Wang et al. (2008) reported the uni-directional
heat flux phenomena in a horizontal fluid layer with sinusoidal
wall temperature boundary conditions. Similar studies were also
performed by Reeve et al. (2004) and Nithyadevi et al. (2006). All
these studies indicate that the natural convection heat transfer in
a system with time oscillating boundary conditions can be signifi-
cantly augmented. Similar natural convection heat transfer aug-
mentation technique with time oscillating boundary conditions
can also be applied in porous media systems, such as solidification
in cast process, cooling of electronic devices and post-accident
cooling of nuclear reactors (Rudraiah and Malashetty, 1990). How-
ever, the researches on this subject are relatively scarce. Rudraiah
and Malashetty (1990) studied the stability and onset of convec-
tion in a fluid saturated porous medium layer under periodic ver-
tical temperature gradient. Antohe and Lage (1994) investigated
the convection induced by a fixed-amplitude, time-periodic, hori-
zontal heat flux imposed on a saturated porous medium enclosure.

It is worth noting that, Kalabin et al. (2005) reported the time-
averaged Nusselt number was not zero for an inclined cubic cavity
with a sinusoidal wall temperature on the one side wall and a con-
stant average temperature on the opposing side wall. The system
had no temperature difference between the opposing two side
walls in a time-average sense and the inclination angle was varying
from 0� to 89�. The maximal heat flux was obtained at an inclined
angle of 54� and dimensionless frequency of 20p. Their findings
could be useful for enhancing and controlling the natural convec-
tions in a clear fluid system. Similar phenomena could also be ex-
pected to occur in porous media systems. Enlightened by Kalabin
et al. (2005), Wang et al. (2008a,b) recently studied the natural
convection in inclined porous cavities with one side wall (upward
facing) of oscillating temperature and the opposing side wall
(downward facing) at constant average temperature. Numerical re-
sults were obtained for the values of the inclined angle
0� 6 a 6 80� and various values of the dimensionless oscillating
frequency. They found that, the time-averaged heat flux was al-
ways transferred from the upward-facing wall to downward-facing
wall for porous cavity. They also obtained the maximal heat flux at
an inclined angle of 42.2� and dimensionless frequency of 46.7p.
Their findings could be of great significance for enhancing and
optimizing the natural convection heat transfer in porous media
systems. However, in the above mentioned researches of Kalabin
et al. (2005) and Wang et al. (2008a,b), the natural convections
in the inclined cavities were modeled with two-dimensional meth-
ods and the cavity inclination angles are of 0� 6 a 6 89� and
0� 6 a 6 80� respectively. According to the earlier numerical and
experimental studies of Ozoe et al. (1974, 1979), if the cavity
was seriously inclined (80� 6 a 6 90�), complex flow pattern with
three-dimensional multiple roll-cells would appear in the cavity.
Therefore, when the cavity inclination angle is relatively large
(a P 80�), the two-dimensional model would be questionable
and it is necessary to model the unsteady natural convection inside
with three-dimensional method. Furthermore, in all previous stud-
ies, the inclined cavity was only rotated around single axis (parallel
to the hot and cold surfaces), and the effects of other inclination
angles are still unknown, which would also be interesting and
important for applications. With these motivations, in the present
study, we further study the natural convections in an inclined por-
ous cavity with three-dimensional method, where the boundary
conditions are similar to those of Wang et al. (2008a). Our objective
is to investigate the three-dimensional natural convection charac-
teristics with the combination effects of inclination angles and
temperature oscillation frequency, especially when the porous cav-
ity is seriously inclined, and find out the maximal heat fluxes at
optimal combinations of these effects. According to the authors’
knowledge, almost no such attentions have been paid to this sub-
ject before and the findings would be useful for further under-
standing and optimizing the natural convection heat transfer in
three-dimensional porous media systems.
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2. Mathematical formulation

As shown in Fig. 1a, a three-dimensional cubic cavity with
dimensions of L � L � L is filled with porous medium and fluid,
where the fluid is a Newtonian incompressible fluid (Pr = 1.0) and
the porous medium is homogeneous and isotropic. The temperature
on the right side wall (x = L) is kept at constant T0 and it is sinusoidal
oscillating with time at a mean temperature T0 on the opposing side
wall (x = 0). The top, bottom and two other side walls are all kept
adiabatic. In the present study, the cavity is inclined around both
x and y axes with a1 and a2 respectively to account for the three-
dimensional inclination effects. Firstly, a2 is fixed at 0� and the cav-
Fig. 1. Physical models.
ity is inclined around y-axis with a1 from 0� to 90� (see Fig. 1b).
Then, a1 is fixed at a constant degree and the cavity is inclined
around x-axis with a2 from 0� to 90� (see Fig. 1c).

In the present study, the natural convection in the cubic cavity
is considered to be three-dimensional, laminar, incompressible and
unsteady. The porous medium is assumed to be in local thermal
equilibrium with the fluid. The thermophysical properties of the
fluid and the porous material are taken to be constant except for
the density variation in the buoyancy force, which is treated by
using the Boussinesq approximation. The Darcy–Forchheimer–
Brinkman model (Nield and Bejan, 2006) is adopted to simulate
the flow in porous medium, where both the inertia and viscosity
effects are considered. The conservation equations for mass,
momentum and energy are as follows:

Continuity:

r �~m ¼ 0 ð1Þ

Momentum:

1
e
@u
@t
þ 1

e2 ð~m � ruÞ ¼ � 1
qf

@p
@x
þ mmr2u� mf

K
u

� cFffiffiffiffi
K
p j~mjuþ bðT � T0Þg sina1

1
e
@v
@t
þ 1

e2 ð~m � rvÞ ¼ � 1
qf

@p
@y
þ mmr2v � mf

K
v

� cFffiffiffiffi
K
p j~mjv þ bðT � T0Þg cos a1 sin a2

1
e
@w
@t
þ 1

e2 ð~m � rwÞ ¼ � 1
qf

@p
@z
þ mmr2w� mf

K
w

� cFffiffiffiffi
K
p j~mjwþ bðT � T0Þg cos a1 cos a2

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð2Þ

Energy:

ðqCpÞm
@T
@t
þ ðqCpÞf �~m � rT ¼ kmr2T ð3Þ

where b is the fluid thermal expansion coefficient. ~m is the velocity
vector. e and K are the porosity and permeability of the porous med-
ium, respectively. cF is the inertia coefficient of the porous medium,
cF ¼ 1:75=ð

ffiffiffiffiffiffiffiffiffi
150
p

� e1:5Þ (Ergun, 1952). km is the effective thermal
conductivity of porous medium, km = (1 � e)ks + ekf, where ks and
kf are the thermal conductivities of the solid framework and fluid,
respectively. mm is the effective kinetic viscosity of porous medium.
The value of mf is used as an approximate value of mm and this
Table 1
Absolute time-averaged Nusselt numbers on the left side wall with different grids
within the 3rd to 5th time-periods (Ra = 106, Da = 10�3, Pr = 1.0, e = 0.6, r = 1.0,
f = 20p, sp = 0.1, a1 = 0� and a2 = 0�).

Grids 30 � 30 � 30 40 � 40 � 40 50 � 50 � 50

NuLav (3rd time-period) 8.871 8.793 8.766
NuLav (4th time-period) 8.875 8.794 8.769
NuLav (5th time-period) 8.875 8.794 8.770

Fig. 2. Physical model reported by Kladias and Prasad (1991).



Table 2
Comparisons of the average Nusselt number between present computations and experiments reported by Kladias and Prasad (1991).

Cases e Da Pr Ra Nu

Present Kladias and Prasad (1991)

1 0.375 1.16 � 10�6 4.0 4.05 � 108 6.05 6.41
2 0.396 5.84 � 10�6 4.0 1.10 � 108 6.76 6.28
3 0.453 7.78 � 10�5 4.0 0.80 � 107 5.99 6.19
4 0.453 7.78 � 10�5 4.0 2.28 � 107 9.84 10.35
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approximation provides good agreement with experiment data ob-
tained by Lundgren (1972).

The initial and boundary conditions are as follows:

t ¼ 0; u ¼ v ¼ w ¼ 0; T ¼ T0

x ¼ 0; u ¼ v ¼ w ¼ 0; T ¼ T0 þ T1 sin xt

x ¼ L; u ¼ v ¼ w ¼ 0; T ¼ T0

y ¼ 0; L u ¼ v ¼ w ¼ 0; @T=@y ¼ 0
z ¼ 0; L u ¼ v ¼ w ¼ 0; @T=@z ¼ 0

8>>>>>><
>>>>>>:

where x is the temperature oscillation frequency.
Fig. 3. Transient temperature (left column) and streamline (middle and right columns) d
f = 20p, sp = 0.1, a1 = 45� and a2 = 0�).
It is convenient to cast the above governing equations in terms
of dimensionless variables as follows:

s ¼ tam=L2; X ¼ x=L; Y ¼ y=L; Z ¼ z=L;

U ¼ uL=am; V ¼ vL=am; W ¼ wL=am; P ¼ pL2=ðq0a2
mÞ;

h ¼ ðT � T0Þ=ðT1 � T0Þ; r ¼ ðqcpÞm=ðqcpÞf ; Pr ¼ mf=am;

Da ¼ K=L2; Ra ¼ gbðT1 � T0ÞL3=ðmf amÞ

8>>>><
>>>>:

ð4Þ
where r is the specific heat ratio. Pr and Da are the Prandtl number
and Darcy number, respectively. am is the effective thermal diffusiv-
ity of the porous medium, am = km/(qcp)f.
istributions within the 5th time-period (Ra = 106, Da = 10�3, Pr = 1.0, e = 0.6, r = 1.0,



Fig. 3. (continued).
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Substitute these dimensionless variables into Eqs. (1)–(3), the
corresponding dimensionless conservation equations for mass,
momentum and energy can be obtained as follows:

Continuity:

r � ~V ¼ 0 ð5Þ

Momentum:

1
e
@U
@s þ

1
e2 ð~V � rUÞ ¼ � @P

@X
þ Prr2U � Pr

Da
U

� cFffiffiffiffiffiffi
Da
p j~V jU þ RaPrh sin a1

1
e
@V
@s
þ 1

e2 ð~V � rVÞ ¼ � @P
@Y
þ Prr2V � Pr

Da
V

� cFffiffiffiffiffiffi
Da
p j~V jV þ RaPrh cosa1 sina2

1
e
@W
@s
þ 1

e2 ð~V � rWÞ ¼ � @P
@Z
þ Prr2W � Pr

Da
W

� cFffiffiffiffiffiffi
Da
p j~V jW þ RaPrh cosa1 cos a2

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð6Þ
Energy:

r @h
@s
þ ~V � rh ¼ r2h ð7Þ

The dimensionless initial and boundary conditions are as
follows:

s ¼ 0 U ¼ V ¼W ¼ 0; h ¼ 0; P ¼ 0
X ¼ 0 U ¼ V ¼W ¼ 0; h ¼ sin fs
X ¼ 1 U ¼ V ¼W ¼ 0; h ¼ 0

Y ¼ 0;1 U ¼ V ¼W ¼ 0; @h=@Y ¼ 0
Z ¼ 0;1 U ¼ V ¼W ¼ 0; @h=@Z ¼ 0

8>>>>>><
>>>>>>:
where f is the dimensionless temperature oscillation frequency,
f = xL2/am.

The absolute time-averaged Nusselt number on the left side
wall (X = 0) are defined as follow:

NuLav ¼
1
sp

Z nsp

ðn�1Þsp

Z 1

0

Z 1

0

@h
@X

����
����

X¼0
dYdZds ð8Þ

The average Nusselt number and the time-averaged Nusselt
number on the right side wall (X = 1) are defined as follows:
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NuR ¼ �
Z 1

0

Z 1

0

@h
@X

����
X¼1

dYdZ;

NuRav ¼
1
sp

Z nsp

ðn�1Þsp

Z 1

0

Z 1

0

@h
@X

����
X¼1

dYdZds ð9Þ

where sp is the dimensionless time-period with the definition of
sp = 2p/f and n is the number of time-period.
3. Numerical method and model validation

The dimensionless governing equations (Eqs. (5)–(7)) in the
present study are solved with the control volume procedure out-
lined by Patankar (1980). The SIMPLE algorithm is employed to
couple the velocities and pressure. A fully implicit scheme is ap-
plied for discretizing the time derivatives. The convective terms
are discretized by using the QUICK scheme and a second-order
Fig. 4. Transient temperature (left column) and streamline (middle and right columns) d
f = 20p, sp = 0.1, a1 = 86� and a2 = 0�).
central difference scheme is used for the diffusion terms. The
resulting algebraic equations are solved by the tri-diagonal matrix
algorithm (TDMA). For convergence criteria, the relative variations
of the temperature and velocity between two successive iterations
are demanded to be smaller than the previously specified accuracy
levels of 10�5.

Before proceeding further, the grids independence tests are per-
formed at first. As shown in Fig. 1a, the cavity is not inclined and
the values of a1, a2 are kept at 0�. The temperature oscillation fre-
quency (f) is 20p and other parameters are kept at constant with
Ra = 106, Da = 10�3, Pr = 1.0, e = 0.6, r = 1.0. Three sets of uniform
and un-staggered grids are used for the tests: 30 � 30 � 30,
40 � 40 � 40 and 50 � 50 � 50. The computational results are pre-
sented in Table 1. It is shown that, the differences of the absolute
time-averaged Nusselt numbers on the left side wall (NuLav,
X = 0) within the 3rd to 5th time-periods are insignificant between
40 � 40 � 40 and 50 � 50 � 50 grids. Therefore, the grid of
istributions within the 5th time-period (Ra = 106, Da = 10�3, Pr = 1.0, e = 0.6, r = 1.0,
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40 � 40 � 40 is finally employed for the following studies. Further-
more, it can be found that, with the same grid, the predicted values
of NuLav within the 4th and 5th time-periods are very close to each
other. Therefore, for the following computations, five time-periods
are needed for each case.

Furthermore, in order to validate the reliability and accuracy of
the present computational model and self-developed code, quanti-
tative comparisons are carried out with the experimental results
reported by Kladias and Prasad (1991). The experimental problem
is shown in Fig. 2, where a three dimensional rectangular cavity
with dimensions of L � L � H is filled with porous media and fluid
(Pr = 4.0). The cavity is heated from bottom (T = T1) and cooled on
top (T = T0). All other walls are kept adiabatic. The predicted and
experimental average Nusselt numbers are compared in Table 2.
The average deviation of Nusselt numbers is 5.4%. This indicates
that, the present computational model and self-developed code
are reliable and capable of modeling the natural convection phe-
nomena in three-dimensional porous systems.
Fig. 4. (cont
4. Results and discussion

4.1. Effect of inclination angle a1

As shown in Fig. 1b, the porous cavity is inclined around y-axis
step by step with the inclination angle a1 from 0� to 90�, and the
inclination angle a2 (rotating around x-axis) is fixed at 0�. In this
case, the effect of a1 is carefully investigated with Ra = 106 and
107, especially when the cavity is seriously inclined (80� 6
a1 6 90�). The computations are performed with other parameters
kept constant: Da = 10�3, Pr = 1.0, e = 0.6, r = 1.0 and f = 20p.

Firstly, the transient temperature and streamline distributions
in the porous cavity with moderate inclination angles (a1 = 45�,
a2 = 0�) and Ra = 106 are presented in Fig. 3. It is clearly shown that,
the buoyancies are generated from the hot walls and the tempera-
ture fields at each moment of the time-period are all quite sym-
metrical. The streamline distributions at each moment of the
time-period are stable and regular. At the beginning of the
inued).
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time-period (s = 4.0sp, see Fig. 3a), there exist two large clockwise
roll-cells in the lower and upper regions of the cavity. Meanwhile,
in the right corner of the cavity, there exists a relatively small
counterclockwise roll-cell. As time increases, the cavity is mainly
occupied with a single large clockwise roll-cell (s = 4.2sp and
4.4sp, see Fig. 3b and c). After then, the cavity is occupied with
two large roll-cells rotating in reverse directions (s = 4.6sp and
4.8sp, see Fig. 3d and e), where the upper roll-cell is rotating in
clockwise direction and the lower one is rotating in counterclock-
wise direction. At the end of the time-period (s = 5.0sp, see Fig. 3f),
the streamline distribution returns to the beginning of the time-
period (s = 4.0sp, see Fig. 3a). Furthermore, it is obvious that, all
these roll-cells are parallel to each other and their rotating axes
are perpendicular to x–z-surface. These findings indicate that,
when the porous cavity is moderately inclined, the flow patterns
inside are quasi two-dimensional and the transition phenomena
are similar to those of Wang et al. (2008a). However, if the porous
cavity is more seriously inclined (a1 P 80�;a2 ¼ 0�), the flow pat-
terns inside would be more complex and the transport phenomena
should be quite different. The transient temperature and stream-
line distributions in a seriously inclined porous cavity (a1 = 86�,
a2 = 0�) with Ra = 106 are presented in Fig. 4. Compared with those
demonstrated in Fig. 3, it can be found that, in this case (a1 = 86�,
a2 = 0�), the temperature fields and flow patterns at each moment
of the time-period are much more complicated and the three-
dimensional characteristics are very remarkable, especially when
the cavity is heated from below (s = 4.2sp and 4.4sp, see Fig. 4b
and c). Furthermore, it is obvious that, at each moment of the
time-period, the porous cavity is mainly occupied with pairs of
multiple roll-cells. These roll-cells are not parallel to each other
any more and their rotating axes are intercrossed with different
angles. These findings reveal that, when the porous cavity is seri-
ously inclined, the complex flow patterns with three-dimensional
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multiple roll-cells will be established and the two-dimensional
model of Wang et al. (2008a,b) is infeasible any more.

The periodic oscillations of average Nusselt number on the right
side wall (NuR, X = 1) with Ra = 106 and Ra = 107 are presented in
Fig. 5. It is shown that, when a1 equals 0� (see Fig. 5a and b), the
Nusselt number NuR is oscillating with identical values of positive
and negative amplitudes, which indicates the net heat flux from
the oscillating temperature wall (X = 0) to the constant tempera-
ture wall (X = 1) is zero. As the inclined angle increases, the Nusselt
number becomes larger than zero when it is integrated in time.
This suggests that, the heat flux is positive from the oscillating
temperature wall (X = 0) to the constant temperature wall (X = 1)
in spite of the net zero temperature difference between these
two walls in a time-averaged sense. These findings agree with
the two-dimensional results for both the clear (Kalabin et al.,
2005) and porous flows (Wang et al., 2008a). Furthermore, it is
found that, when the porous cavity is seriously inclined (a1 = 80�,
86� and 90�, see Fig. 5c and d), the oscillations of the Nusselt num-
ber become quite different. There exist several extra twists in the
Fig. 7. Transient temperature (left column) and streamline (middle and right columns) d
f = 20p, sp = 0.1, a1 = 50� and a2 = 45�).
curves of NuR and the curves are seriously deviated from the sinu-
soidal law. When the porous cavity is seriously inclined, the flow
patterns inside are unstable and three-dimensional multiple roll-
cells are established, especially when the cavity is heated from be-
low (see Fig. 4b and c), which would lead to the irregular oscilla-
tions for the Nusselt numbers. The variations of the time-
averaged Nusselt number on the right side wall (NuRav, X = 1) with
Ra = 106 and Ra = 107 are presented in Fig. 6. It shows that, when a1

changes from 0� to 75�, the Nusselt number increases first and then
decreases smoothly. The maximal heat fluxes are obtained at
a1 = 50� (a2 = 0�) as Ra equals 106 and a1 = 45� (a2 = 0�) as Ra equals
107, respectively. This is similar to the results of Kalabin et al.
(2005) and Wang et al. (2008a). However, when a1 is located in
the range of 75�–90�, the variation of the Nusselt number becomes
quite different. There exists a local peak in each curve of NuRav and
the local maximal heat fluxes are obtained at a1 = 84� when
Ra = 106 and a1 = 85� when Ra = 107, respectively. This confirms
that, when the porous cavity is moderately inclined, the natural
convections inside would be stable, regular and quasi two-dimen-
istributions within the 5th time-period (Ra = 106, Da = 10�3, Pr = 1.0, e = 0.6, r = 1.0,
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sional. However, when the porous cavity is seriously inclined, the
natural convections inside are unstable and three-dimensional,
which finally leads to complicated heat transfer performances.

4.2. Effect of three-dimensional inclinations

As shown in Fig. 1c, the porous cavity is inclined around both x
and y axes to account for the three-dimensional inclination effects
and find out the optimal inclination angles. According to above
analysis, it is learned that, when the porous cavity is only rotated
around y-axis, the maximal heat fluxes are obtained at a1 = 50�
(a2 = 0�) when Ra = 106 and a1 = 45� (a2 = 0�) when Ra = 107,
respectively. Therefore, in this case, the porous cavity is firstly ro-
tated around y-axis with a1 = 50� as Ra equals 106 and a1 = 45� as
Ra equals 107, respectively, and then it is rotated around x-axis
step by step with a2 from 0� to 90�. The computations are per-
formed with other parameters kept constant: Da = 10�3, Pr = 1.0,
e = 0.6, r = 1.0 and f = 20p.

The transient temperature and streamline distributions in the
porous cavity with representative inclination angles (a1 = 50�,
Fig. 7. (cont
a2 = 45�) with Ra = 106 are presented in Fig. 7. It is shown that,
the temperature fields and flow patterns at each moment of the
time-period are symmetrical and stable. At the beginning of the
time-period (s = 4.0sp, see Fig. 7a), there exist three roll-cells in
the porous cavity, two large clockwise roll-cells are in the upper
and lower regions and a small counterclockwise roll-cell is in the
corner. As time increases, the roll-cells are merged to be a larger
single clockwise roll-cell (s = 4.2sp and 4.4sp, see Fig. 7b and c).
After then, the cavity is occupied with two large roll-cells
(s = 4.6sp and 4.8sp, see Fig. 7d and e), where the upper roll-cell
is rotating in clockwise direction and the lower one is rotating re-
versely. At the end of the time-period (s = 5.0sp, see Fig. 7f), the
flow pattern is back to the beginning of the time-period
(s = 4.0sp, see Fig. 7a). These transitions are similar to those dem-
onstrated in Fig. 3 (a1 = 45�, a2 = 0�). However, in this case
(a1 = 50�, a2 = 45�), the temperature fields and flow patterns are
more complex and the three-dimensional characteristics are quite
remarkable. At each moment of the time-period, the porous cavity
is mainly occupied with pairs of symmetrical screw type flexural
roll-cells and their rotating axes are intercrossed with each other.
inued).
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These findings indicate that, when the porous cavity is inclined
with three-dimensional method, the flow patterns inside are more
complicated and the heat transfer performance would be different.

The periodic oscillations of average Nusselt number on the right
side wall (NuR, X = 1) with Ra = 106 and Ra = 107 are presented in
Fig. 8. It is shown that, with different inclination angles, such as
a2 = 0�, 15�, 45�, 75� and 90�, the Nusselt numbers oscillate with
time smoothly and the time-averaged values are lager than zero.
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Fig. 9. Variations of the time-averaged Nusselt number on the right side wall with
a2 (Da = 10�3, Pr = 1.0, e = 0.6, r = 1.0, f = 20p and sp = 0.1).
It is obvious that, when a2 is equal to 45�, the heat transfer is bet-
ter. The variations of time-averaged Nusselt number on the right
side wall (NuRav, X = 1) with Ra = 106 and Ra = 107 are presented
in Fig. 9. It shows that, as a2 increases from 0� to 90�, the Nusselt
number increases first and then decreases. The maximal heat
fluxes are obtained at a2 = 45�. This suggests that, when a1 is fixed,
the natural convection heat transfer in the porous cavity can be
further improved with proper selection of a2. However, compared
with the results demonstrated in Figs. 5 and 6, it is found that, the
effect of a2 is relatively small and the natural convection in the
porous cavity is mainly affected by a1. This is because, in the pres-
ent study, the heating and cooling surfaces are perpendicular to x-
axis and the flow patterns inside are mainly controlled by a1,
which makes the effect of a2 relatively small.

4.3. Effect of temperature oscillation frequency

Finally, the effect of temperature oscillation frequency is care-
fully examined. In this case, the porous cavity is inclined around
both x and y axes with the optimal inclination angles of a1 = 50�,
a2 = 45� with Ra = 106 and a1 = 45�, a2 = 45� with Ra = 107, respec-
tively, and the oscillation frequency f changes from 5p to 90p. The
computations are performed with the other parameters kept con-
stant: Da = 10�3, Pr = 1.0, e = 0.6, r = 1.0.

The periodic oscillations of average Nusselt number on the right
side wall (NuR, X = 1) with Ra = 106 and Ra = 107 are presented in
Fig. 10. It is shown that, with different oscillation frequencies, such
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as f = 5p, 20p, 45p, 70p and 90p, the Nusselt numbers oscillate
with time smoothly and the time-averaged values are lager than
zero. It is obvious that, as the frequency increases, the amplitudes
of the Nusselt numbers decrease. This is because, as the frequency
increases, the temperature on the lower side wall (X = 0) oscillates
more quickly and the flow patterns inside can not response and
transit as rapidly as possible, which finally leads to the heat trans-
fer delays and Nusselt number amplitude reductions. These find-
ings also agree with the results obtained by Kalabin et al. (2005)
and Wang et al. (2008a). The variations of the time-averaged Nus-
selt number on the right side wall (NuRav, X = 1) with Ra = 106 and
Ra = 107 are presented in Fig. 11. It is shown that, as the frequency
increases from 5p to 90p, the Nusselt number increases first and
then decreases, the maximal heat fluxes are obtained at f = 35p
(a1 = 50�, a2 = 45�) as Ra equals 106 and f = 40p (a1 = 45�,
a2 = 45�) as Ra equals 107, respectively. Furthermore, when the fre-
quency is in the range of 30p–50p, the heat transfer performances
are also satisfactory. This suggests that, with proper combinations
of oscillating frequency and inclination angles, such as f = 35p,
a1 = 50� and a2 = 45� with Ra = 106 and f = 40p, a1 = 45� and
a2 = 45� with Ra = 107, the natural convection heat transfer in
three-dimensional porous system will be significantly improved
and optimized.

5. Conclusions

Three-dimensional natural convections in an inclined porous
cavity with time oscillating boundary conditions are investigated
in this paper. The combination effects of inclination angles (a1,
a2) and temperature oscillation frequency (f) on the convection
characteristics with different Rayleigh numbers (Ra = 106 and
107) are carefully investigated, especially when the porous cavity
is seriously inclined (80� 6 a1 6 90�), and some new transport
phenomena are observed. The major findings are as follows:

Firstly, it is revealed that, when the porous cavity is moderately
inclined (0� 6 a1 6 75�;a2 ¼ 0�), the natural convections inside are
stable, regular and quasi two-dimensional, which are similar to
those of Wang et al. (2008a). However, if the cavity is more seri-
ously inclined (75� 6 a1 6 90�;a2 ¼ 0�), the flow patterns inside
are unstable and much more complicated, and the three-dimen-
sional multiple roll-cells with different intercrossing angles are
established, which would finally lead to complicated heat transfer
performances.

Secondly, it is found that, when the porous cavity is three-
dimensionally inclined (a1 > 0�, a2 > 0�), the natural convections
are quite different and a series of three-dimensional screw type
flexural roll-cells are established. It is also shown that, when a1

is fixed, the natural convection heat transfer can be further im-
proved by changing a2 and the optimal inclination status are ob-
tained at a1 = 50�, a2 = 45� as Ra = 106 and a1 = 45�, a2 = 45� as
Ra = 107, respectively. With these optimal inclination angles, the
maximal heat fluxes in the porous cavity are finally obtained at
the optimal frequencies of f = 35p with Ra = 106 and f = 40p with
Ra = 107, respectively.

The above conclusions would be useful for further understand-
ing and optimizing the natural convections in three-dimensional
porous media systems.
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